Abstract
Organosilicon compounds and polymers have found wide applications as synthetic building blocks and functional materials. Hydrosilylation is a common strategy toward the synthesis of organosilicon compounds and polymers. Although transition-metal-catalyzed hydrosilylation has achieved great advances, the metal-free hydrosilylation polymerization of dienes and bis(silane)s, especially the one suitable for both electron-rich and electron-deficient dienes, is largely lacking. Herein, we report a visible-light-driven metal-free hydrosilylation polymerization of both electron-rich and electron-deficient dienes with bis(silane)s by using the organic photocatalyst and hydrogen atom transfer (HAT) catalyst. We achieved the well-controlled step-growth hydrosilylation polymerizations of the electron-rich diene and bis(silane) monomer due to the selective activation of Si-H bonds by the organic photocatalyst (4CzIPN) and the thiol polarity reversal reagent (HAT 1). For the electron-deficient dienes, hydrosilylation polymerization and self-polymerization occurred simultaneously in the presence of 4CzIPN and aceclidine (HAT 2), providing the opportunity to produce linear, hyperbranched, and network polymers by rationally tuning the concentration of electron-deficient dienes and the ratio of bis(silane)s and dienes to alter the proportion of the two polymerizations. A wide scope of bis(silane)s and dienes furnished polycarbosilanes with high molecular weight, excellent thermal stability, and tunable architectures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.