Abstract

Downlink beamforming is an essential technology for wireless cellular networks; however, the design of beamforming vectors that maximize the weighted sum rate (WSR) is an NP-hard problem and iterative algorithms are typically applied to solve it. The weighted minimum mean square error (WMMSE) algorithm is the most widely used one, which iteratively minimizes the WSR and converges to a local optimal. Motivated by the recent developments in meta-learning techniques to solve non-convex optimization problems, we propose a meta-learning based iterative algorithm for WSR maximization in a MISO downlink channel. A long-short-term-memory (LSTM) network based meta-learning model is built to learn a dynamic optimization strategy to update the variables iteratively. The learned strategy aims to optimize each variable in a less greedy manner compared to WMMSE, which updates variables by computing their first order stationary points at each iteration step. The proposed algorithm outperforms WMMSE significantly in the high signal to noise ratio (SNR) regime and achieves comparable performance when the SNR is low.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.