Abstract

First-principles total-energy calculations reveal a novel local atomic reconstruction mode around anion vacancies in II-VI and chalcopyrite compounds resulting from the formation of metal dimers. As a consequence, the neutral Se vacancy has an unexpected low symmetry in ZnSe and becomes a deep donor in both ZnSe and CuGaSe2, contrary to the common belief regarding chalcopyrites. The calculated optical transition energies explain the hitherto puzzling absorption bands observed in the classic experiments of the color center in ZnS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.