Abstract

The biomolecules offer different metal-binding sites to form a coordination polymer with structural diversity. The coordination directed one-dimensional metal-biomolecule nanofibers (Cu-Asp NFs) designed using copper as metal ion and aspartate as a ligand for triboelectric nanogenerator (TENG) is reported here. The different characterization techniques reveal the detailed characteristics of the synthesized Cu-Asp NFs. The robust coating of the Cu-Asp NFs is achieved using a simple tape cast coater. The bending and water dipping studies suggest the stability of the coated material. The relative polarity test and Kelvin probe force microscopy (KPFM) reveal the position of Cu-Asp in the triboelectric series. The Cu-Asp NFs and Teflon are used as the active material for the fabrication of freestanding mode (NF-TENG) and contact-separation mode (cNF-TENG) TENG. The NF-TENG generates an output of 200 V and 6 μA. The simple ion deposition technique enhances the voltage, current, and transferred charge of cNF-TENG by 2.5, 8, and 3 times. The use of the material for the single electrode sliding mode device further confirms the coated material's stability and robustness. A selective self-powered thioacetamide sensor is developed with the cNF-TENG, which exhibits a sensitivity of 0.76 v mM-1. Finally, NF-TENG is demonstrated for powering up numerous portable electronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.