Abstract

A series of two-electron-oxidized cobalt porphyrin dimers have been synthesized upon controlled oxidations using halogens. Rather unexpectedly, X-ray structures of two of these complexes contain two structurally different low-spin molecules in the same asymmetric unit of their unit cells: one is the metal-centered oxidized diamagnetic entity of the type CoIII(por), while the other one is the ligand-centered oxidized paramagnetic entity of the type CoII(por•+). Spectroscopic, magnetic, and DFT investigations confirmed the coexistence of the two very different electronic structures both in the solid and solution phases and also revealed a ferromagnetic spin coupling between Co(II) and porphyrin π-cation radicals and a weak antiferromagnetic coupling between the π-cation radicals of two macrocycles via the bridge in the paramagnetic complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.