Abstract

Acoustic deformation potential (ADP) plays a significant role in quantifying carrier-acoustic phonon interactions in semiconductors. In this work, we report a novel ultrafast spectroscopy method to extract the ADP coupling constant of a semiconductor by jointly analyzing the coherent acoustic phonon signals with and without a metal transducer. By applying this method to GaAs, the ADP coupling constant corresponding to the band gap was extracted using a pump photon energy near the band gap, which agrees well with literature values. With a larger pump photon energy, the ADP coupling constant deviates from the one for the band gap, which is attributed to contributions from the carrier dynamics in multiple energy and wavevector states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call