Abstract

Multinuclear metal complexes have seen tremendous progress in synthetic advances, their versatile structural features, and emerging applications. Here, we conceptualize Metal‐to‐Metal distance modulation in cyclophanyl metal complexes by bridging ligand design employing the co‐facially stacked cyclophanyl‐derived pseudo‐geminal, ‐ortho, ‐meta, and ‐para constitutional isomers grafted with N‐, O‐, and P‐ containing chelates that allow the installation of diverse (hetero)metallic moieties in a distance‐defined and spatially‐oriented relation to one another. Metal‐to‐Metal distance modulation and innate transannular “through‐space” π–π electronic interactions via the co‐facially stacked benzene rings in cyclophanyl‐derived complexes as well as their specific stereochemical structural features (element of planar chirality) are crucial factors that contribute to the tuning of structure‐property relationships, which stand at the very center from the perspective of cooperative effects in catalysis as well as emerging material applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.