Abstract

We have investigated structure, electronic, and magnetic properties of metal-terminated zigzag graphene nanoribbons (M-ZGNRs) by first-principles calculations. Two families of metal terminations are studied: (1) 3d-transition metals (TMs) Fe, Co, and Ni and (2) noble metals (NMs) Cu, Ag, and Au. All systems have spin-polarized edge states with antiferromagnetic (AFM) ordering between two edges, except Co-ZGNRs and Ni-ZGNRs which exhibit negligibly small energy differences between AFM and ferromagnetic states with the given ribbon width. In the AFM state the TM terminations transform semiconducting ZGNRs into metallic ones while the band gap remains in ZGNR with NM terminations. Ferromagnetic states of M-ZGNRs with TM terminations show a high degree of spin polarization at the Fermi energy. We predict a large magnetoresistance in Fe-ZGNR junctions with a low, uniform magnetic switching field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.