Abstract

AbstractElectrochemical hydrogen and acetate cogeneration from ethanol is a promising green hydrogen production technique with low hydrogen production energy consumption and high profitability. However, the poor catalytic stability of the anodic ethanol electro‐oxidation reaction (EOR) retards the device application. We adopted a metal support interaction strategy to reinforce small‐sized Au active sites using cuprous sulfide supports. The Au−Cu2–xS/C showed a superior activity of 1055 mA mgAu−1 at 1.1 V vs. RHE and retained the high activity in the chronopotentiometric test, surpassing the Au/C catalyst. It was demonstrated that the Cu2–xS support facilitated the formation of Au−OH and prevented the gold sites from aggregation, leading to high activity and stability for EOR. Finally, an electrochemical cogeneration electrolyzer assembled with the Au−Cu2–xS/C anodic catalyst continuously ran for over 100 hours, suggesting the device‘s applicability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.