Abstract

Bradyrhizobium japonicum Mur and Escherichia coli Fur are manganese- and iron-responsive transcriptional regulators, respectively, that belong to the same protein family. Here, we show that neither Mur nor Fur discriminate between Fe(2+) and Mn(2+) in vitro nor is there a metal preference for conferral of DNA-binding activity on the purified proteins. When expressed in E. coli, B. japonicum Mur responded to iron, but not manganese, as determined by in vivo promoter occupancy and transcriptional repression activity. Moreover, E. coli Fur activity was manganese-dependent in B. japonicum. Total and chelatable iron levels were higher in E. coli than in B. japonicum under identical growth conditions, and Mur responded to iron in a B. japonicum iron export mutant that accumulated high levels of the metal. However, elevated manganese content in E. coli did not confer activity on Fur or Mur, suggesting a regulatory pool of manganese in B. japonicum that is absent in E. coli. We conclude that the metal selectivity of Mur and Fur depends on the cellular context in which they function, not on intrinsic properties of the proteins. Also, the novel iron sensing mechanism found in the rhizobia may be an evolutionary adaptation to the cellular manganese status.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.