Abstract

Propane dehydrogenation (PDH) is a crucial approach for propylene production. However, commonly used CrOx-based catalysts have issues including easy sintering at elevated reaction temperatures and relying on high acidity supports. In this work, we develop a strategy, to strongly anchor and isolate active sites against their commonly observed aggregation during reactions, by taking advantage of the net trap effect in chromate intercalated Zn-Cr layered hydroxides as precursors. Furthermore, the intercalated chromate overcomes the collapse of traditional layered hydroxides during their transformation to metal oxide, thus exposing more available active sites. A joint fine modulation including crystal structure, surface acidity, specific surface area, and active sites dispersion is performed on the final mixed metal oxides for propane dehydrogenation. As a result, Zn1Cr2-CrO42--MMO delivers attractive propane conversion (~27%) and propylene selectivity (>90%) as compared to other non-noble-metal-based catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call