Abstract

Thin films of antiperovskite Mn3Mn1−xPdxN with x up to 0.36 were grown by reactive magnetron co-sputtering method. All the deposits exhibit a [1 0 0] preferential orientation, with the lattice constant slightly enlarged in samples with ever more Pd atoms partially substituting the MnI atoms in Mn3MnN matrix. The replacement of MnI atoms in antiperovskite structure by Pd atoms, besides reducing the saturation magnetization, also invokes a metal-semiconductor transition which occurs remarkably at a comparable resistivity level. Moreover, a positive magnetoresistance was observed in samples of a high Pd content. These tunable electrical and magnetic properties of ternary antiperovskite compounds might promise some ingenious applications in electronic industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.