Abstract

Metal-semiconductor-metal near-ultraviolet (NUV) photodetectors (PDs) based on zinc oxide (ZnO) nanorods (NRs), operating at λ ~ 380 nm, were fabricated using conventional photolithography and hydrothermal synthesis processes. The vertically aligned ZnO NRs were selectively grown in the channel area of PDs. The performance of ZnO NR-based NUV PDs was optimized by varying the solution concentration and active channel width (Wch). For the fabricated samples, their electrical and photoresponse properties were investigated under the dark state and the illumination at wavelength of ~380 nm, respectively. For the device (Wch = 30 μm) with ZnO NRs at 25 mM, the highest photocurrent of 0.63 mA was obtained with the on/off ratio of 1720 at the bias of 5 V. The silicon dioxide passivation was also carried out to improve the photoresponse properties of PDs. The passivated devices exhibited faster rise and reset times rather than those of the unpassivated devices.

Highlights

  • Zinc oxide (ZnO) nanostructures (NSs, i.e., thin films, nanowires, and nanorods) have been extensively investigated in various applications including optoelectronics, transparent electrodes, and sensors due to their high transparency in the visible range, low cost, radiation hardness, and thermal/chemical stabilities [1,2,3,4,5,6,7,8,9,10,11,12]

  • We investigated the synthesis and characteristics of one-dimensional ZnO nanorods (NRs) hydrothermally formed on the Al-doped ZnO (AZO) layer in MSM structures by the selective area growth and their

  • The ZnO Xray diffractometer (XRD) peak was observed at 2θ = 34.4° which corresponds to the (002) direction of hexagonal wurtzite ZnO from the JCPDS card no. 89-1397, and no other ZnO peaks were found. This indicates that the c-axis of hydrothermally grown ZnO NRs is oriented vertically to the AZO seed layer

Read more

Summary

Introduction

Zinc oxide (ZnO) nanostructures (NSs, i.e., thin films, nanowires, and nanorods) have been extensively investigated in various applications including optoelectronics, transparent electrodes, and sensors due to their high transparency in the visible range, low cost, radiation hardness, and thermal/chemical stabilities [1,2,3,4,5,6,7,8,9,10,11,12]. ZnO is a promising metal oxide semiconductor material for short wavelength (ultraviolet (UV) and blue) applications including photodetectors (PDs), lasers, and light-emitting diodes due to its excellent optical properties such as wide direct bandgap of 3.37 eV and large exciton binding energy of 60 meV at room temperature. There is very little information on ZnO homojunction-based UV PDs. there are still practical limitations to grow ZnO NSs on selected areas of MSM structures. Hydrothermal synthesis has been considered as a promising method due to its relatively simple process, low working temperature, and short growth time [2, 13,14,15]. We investigated the synthesis and characteristics of one-dimensional ZnO nanorods (NRs) hydrothermally formed on the Al-doped ZnO (AZO) layer in MSM structures by the selective area growth and their

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.