Abstract

Phytoremediation consists of biological techniques for heavy metal remediation, which include exploring the genetic package of vegetable species to remove heavy metals from the environment. The goals of this study were to investigate heavy metal and bioaugmentation effects on growth and nutrient uptake by Mucuna deeringiana; to determine the metal translocation factor and bioconcentration factor and provide insight for using native bacteria to enhance heavy metal accumulation. The experiment was conducted under greenhouse conditions using a 2×4 factorial scheme with highly and slightly contaminated soil samples and inoculating M. deeringiana with three highly lead (Pb+2)-resistant bacteria Kluyvera intermedia (Ki), Klebsiella oxytoca (Ko), and Citrobacter murliniae (Cm) isolated from the rhizosphere of native plants identified as Senecio brasiliensis (Spreng.) Less., Senecio leptolobus DC., and Baccharis trimera (Less) DC., respectively. The increased heavy metal concentrations in soil samples do not decrease the root dry mass of M. deeringiana, concerning the number and dry weight of nodules. The shoot dry mass is reduced by the increasing concentration of heavy metals in soil associated with Kluyvera intermedia and Klebsiella oxytoca bacteria. The number of nodules is affected by heavy metals associated with Citrobacter murliniae bacteria. The bacteria K. intermedia, C. murliniae, and K. oxytoca increase the lead and cadmium available in the soil and enhanced metal uptake by Mucuna deeringiana. The M. deeringiana specie has characteristics that make it hyperaccumulate copper and zinc. The translocation and bioconcentration factors for M. deeringiana characterize it as a promising candidate to phytostabilize multi-metal contaminated soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.