Abstract

Host defense systems can invade viral infection through immune responses and cellular metabolism. Recently, many studies have shown that cellular metabolism can be reprogrammed through N6 -methyladenosine (m6 A) modifications during viral infection. Among of them, methyltransferase like-14 enzyme (METTL14) plays an important role in m6 A RNA modification, yet its antiviral function still remains unclear. In this work, it is uncovered that metal-protein nanoparticles designated GSTP1-MT3(Fe2+ ) (MPNP) can polarize macrophages toward the M1 phenotype and activate immune responses to induce Interferon-beta (IFN-β) production in vesicular stomatitis virus (VSV)-infected macrophages. Further investigation elucidates that a high dose of IFN-β can promote the expression of METTL14, which has a well anti-VSV capacity. Moreover, it is found that other negative-sense single-stranded RNA viruses, such as influenza viruses (H1N1(WSN)), can also be inhibited through either immune responses or METTL14. Collectively, these findings provide insights into the antiviral function of METTL14 and suggest that the manipulation of METTL14 may be a potential strategy to intervene with other negative-sense single-stranded RNA viruses infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.