Abstract

Medical shielding suits must be lightweight and satisfy the requirements of thin films to guarantee user mobility and safety. The thin film weight is related to the density and thickness, which are associated with the particle dispersion in shielding materials. An even distribution of metal particles in a polymer can maintain the spacing among them. This paper proposes a pencil beam spray-coating method that involves spraying a constant amount of a polyethylene and tungsten mixture in a thin beam onto a nonwoven fabric at a constant speed. This technique yields higher productivity than does the electrospinning method and is expected to produce materials with better shielding performance than that of materials obtained using the calender method. The shielding performance was evaluated by manufacturing shielding sheets (thickness: 0.48-0.54 mm) using the calender and pencil beam spray-coating methods under the same conditions. The densities and performances of the sheets differed significantly. The sheet manufactured using the proposed method had an even particle dispersion and exhibited 2-4% better shielding performance than did that manufactured using the calender method. Therefore, the pencil beam spray-coating method can effectively satisfy the requirements of thin films for medical radiation-shielding materials while increasing the material flexibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call