Abstract
The reduced graphene oxide/iron oxide (rGO/Fe2O3) and reduced graphene oxide/cobalt oxide (rGO/Co3O4) composite anodes have been successfully prepared through a simple and scalable ball-milling synthesis. The substantial interaction of Fe2O3 and Co3O4 with the rGO matrix strengthens the electronic conductivity and limits the volume variation during cycling in the rGO/Fe2O3 and rGO/Co3O4 composites because reduced graphene oxide (rGO) helps the metal oxides (MOs) to attain a more efficient diffusion of Li-ions and leads to high specific capacities. As anode materials for LIBs, the rGO/Fe2O3 and rGO/Co3O4 composites demonstrate overall superb electrochemical properties, especially rGO/Fe2O3T-5 and rGO/Co3O4T-5, showcasing higher reversible capacities of 1021 and 773 mAhg-1 after 100 cycles at 100 mAg-1, accompanied by the significant rate performance. Because of their superior electrochemical efficiency, high capacity and low cost, the rGO/Fe2O3 and rGO/Co3O4 composites made by ball milling could be outstanding anode materials for LIBs. Due to the excellent electrochemical performance, the rGO/Fe2O3 and rGO/Co3O4 composites prepared via ball milling could be promising anode materials with a high capacity and low cost for LIBs. The findings may provide shed some light on how other metal oxides wrapped by rGO can be prepared for future applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.