Abstract

This paper concerns characterization and modeling of single crystalline tin oxide nanowires used as CO sensors. In this work we analyze the performance of these devices when they are used with variable operating temperatures. The aim is reducing the power consumption and establishing a model suitable for the development of sensing systems working with programmed temperature protocols. In particular we developed and tested a model for the dynamic behavior of the sensor able to predict the sensor response during thermal or chemical transients. This model can be therefore exploited for the selection of optimum temperature profiles targeted to specific applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.