Abstract

Nanoparticles (NPs) are becoming prevalent in consumer goods, including foods and cosmetics. Understanding the interactions between NPs and bacteria in an engineered model colon can indicate potential impacts of NP exposure on the gut, and therefore overall human health. Human microbiome health has important implications to overall individual health. This work aims at quantifying the phenotypic response to NP ingestion of a model microbial community within a model colon. Three NPs at environmentally relevant concentrations (0.01 μg/L ZnO, 0.01 μg/L CeO2, and 3 mg/L TiO2) were individually introduced into a model colon to identify the subsequent impact on the gut microbial community. Results indicate that NPs cause the microbial community's phenotype to partition into three distinct phases: initial conditions, a transition period, and a homeostatic phase, with the NP-exposed community displaying significant differences (p<0.05) from the unexposed community in multiple phenotypic traits. Notably, phenotypes, including short-chain fatty acid (SCFA) production, hydrophobicity, sugar content of the extracellular polymeric substance, and electrophoretic mobility, which indicate changes in the community's stability, were affected by the NPs. TiO2 NPs led to extended phenotypic transformations for hydrophobicity when compared with the other NPs, likely due to its lack of dissociation and greater stability. Overall, the NPs caused nonlethal, significant changes to the microbial community's phenotype, which may be related to overall health effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.