Abstract

Doped polyaniline materials with metal oxalate complexes of Cr, Fe, Mn, Co and Al were synthesized byin situ chemical oxidative polymerization of aniline using potassium perdisulphate as oxidant in aqueous sulphuric acid medium. These polymer materials were characterized by chemical analyses, spectral studies (UV-visible and IR), X-ray diffraction and thermal techniques and also by conductivity measurements by four-probe technique. The presence of complex anion in polyaniline material was confirmed by chemical and spectral analyses. The yield and conductivity of metal oxalate doped polyanilines were found to be high when compared to the simple sulphate ion doped polyaniline prepared under similar condition. UV-visible and IR spectral features not only confirmed the polyaniline doping by complex anions but also substantiated their facilitating effect on conductivity. The X-ray diffraction patterns indicated some crystalline nature in metal oxalate doped polyaniline and amorphous in polyaniline sulphate salt. The conductivity of the polymer samples strongly depended on the degree of crystallinity induced by complex counter anions as dopant. All the polymer materials, as evident from TGA curves, were observed to undergo three-step degradation of water loss, de-doping and decomposition of polymer. Further, the thermal stability of polyaniline was found to improve on doping with metal oxalate complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.