Abstract

The field of organic photoelectrochemical transistor (OPECT) is newly emerged, with increasing efforts attempting to utilize its properties in biological sensing. Advanced materials with new physicochemical properties have proven important to this end. Herein, we report a metal-organic polymers-gated OPECT biosensing exemplified by CuⅠ-arylacetylide polymers (CuAs)-modulated poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) channel. Both the photoelectrochemical properties and gating capability of CuAs are explored and optimized for high-efficacy photogating. Morever, based on its inherent structure, the specific reaction between CuAs and sulfur ions (S2−) is revealed and S2−-mediated microRNA-21 detection is realized by linking with nucleic acid amplification and alkaline phosphatase catalytic chemistry. This work introduces metal-organic polymers as gating materials for OPECT biosensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.