Abstract

The photoresponsive viologen unit has been widely used to endow metal–organic materials with photochromic and other photomodulable properties. Herein we report the first examples of the metal–organic materials functionalized by extended viologens (ExVs), of general formula [ML]·2H2O (M = Zn for 1, M = Mn for 2, M = Co for 3, and L is a tetracarboxylate ligand with the p-phenylene-extended viologen spacer). Of the three isomorphic metal–organic frameworks, only 1 is photochromic owing to formation of extended viologen radicals through photoinduced electron transfer (PET). The incapability of 2 and 3 to undergo photochromism can be ascribed to longer intermolecular donor–acceptor contacts, emphasizing the sensitivity of solid-state PET to structural changes. 1 also shows strong fluorescence owing to interligand charge transfer, and the fluorescence can be reversibly modulated and switched on/off in the photochromic process. Furthermore, 1 shows excellent hydrolytic stability and can be used as a sensitive, ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call