Abstract

A series of nano-photocatalysts metal-organic frameworks (MOFs)/graphitic carbon nitride (CN) (named MOFCN-x) with high activity have been synthesized by in-situ growth method. Under visible light irradiation, MOFCN-x hybrids show enhanced photocatalytic activity for the debromination of polybromodiphenyl ethers (PBDEs) compared with CN. Among all the hybrids, MOFCN-2 shows the highest reaction rate, which is 3.3 times as high as that in CN. MOFCN-x photocatalysts own stable visible light activity after recycled experiment. It indicates that a moderate amount of MOFs in MOFCN-x can largely enhance the photocatalytic ability by improved visible light absorption, larger specific surface area and better photo-generated charge carriers separation and transfer capabilities. More interestingly, the debromination pathway of PBDEs by MOFCN-x shows obvious selectivity compared with pure CN that bromines at meta-positions are much more susceptible than those at the para- and ortho-positions. The possible photoreductive mechanism has been proposed. This study shows that nanocomposite MOFCN can be an excellent candidate for dealing with halogen pollutants by solar-driven.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.