Abstract

Metal-organic frameworks (MOFs) demonstrate strong potential in biosample separation. However, the obtained MOFs powders are unsuitable for recovery techniques in an aqueous solution, especially the challenges of withdrawing MOFs particles and expanding their functions for specific applications. Herein, a general strategy is designed utilizing metal oxide-nanochannel arrays as precursors and templates for in-situ selective growth of MOFs structures. The exemplary MOFs (Ni-bipy) with tailored composition are selectively grown in NiO/TiO2 nanochannel membrane (NM) using NiO as the sacrificial precursor, which enables one to achieve a ∼262 times concentration of histidine-tagged proteins within 100 min. The significantly improved adsorption efficiency in a wide pH range and the effective enrichment from a complex matrix as a nanofilter illustrate the great potential of MOFs in nanochannels membranes for the high-efficiency recovery of essential proteins in complex biological samples. The porous self-aligned Ni-MOFs/TiO2 NM exhibits biocompatibility and flexible functionalities, which is desirable for the generation of multifunctional nanofilter devices and developing biomacromolecule delivery vehicles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call