Abstract

Summary Air pollution, typically haze is getting worse in the urban areas of many countries worldwide. The development of advanced materials for the removal of air pollutants is of great significance for protecting public health. We herein present two promising metal-organic frameworks (MOFs) that show high capture capacities for aromatic volatile organic compounds even at low pressure and high temperature, e.g. benzene uptakes of 1.65 and 0.71 mmol g −1 at 0.12 kPa and 80°C. Breakthrough experiments verify their excellent performance in capturing trace benzene in humid air, also showing them to be comparable with some benchmark materials, including Carboxen 1000, PAF-1, MIL-101(Cr), and so on. Furthermore, the capture performance is well interpreted by the single-crystal structures of guest-loaded phases, where distinct adsorption sites, multiple synergistic host-guest and guest-guest interactions, and adaptive local flexibility are disclosed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.