Abstract
Silicon (Si)-based anode materials with suitable engineered nanostructures generally have improved lithium storage capabilities, which provide great promise for the electrochemical performance in lithium-ion batteries (LIBs). Herein, a metal-organic framework (MOF)-derived unique core-shell Si/SiOx @NC structure has been synthesized by a facile magnesio-thermic reduction, in which the Si and SiOx matrix were encapsulated by nitrogen (N)-doped carbon. Importantly, the well-designed nanostructure has enough space to accommodate the volume change during the lithiation/delithiation process. The conductive porous N-doped carbon was optimized through direct carbonization and reduction of SiO2 into Si/SiOx simultaneously. Benefiting from the core-shell structure, the synthesized product exhibited enhanced electrochemical performance as an anode material in LIBs. Particularly, the Si/SiOx @NC-650 anode showed the best reversible capacities up to 724 and 702 mAh g-1 even after 100 cycles. The excellent cycling stability of Si/SiOx @NC-650 may be attributed to the core-shell structure as well as the synergistic effect between the Si/SiOx and MOF-derived N-doped carbon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.