Abstract
Ferric oxide/carbon (Fe2O3@C) was fabricated via direct carbonization of metal-organic framework of iron (MOF-235) under argon atmosphere. The magnetic Fe2O3 nanoparticles are evenly embedded in porous carbon matrix, while original morphology of MOF-235 was well-maintained. The synthesized Fe2O3@C was used as magnetic sorbent for extracting five benzoylurea insecticides (BUs). The materials exhibited excellent extraction performance, which benefited not only from the strong π-π interaction and hydrophobic interaction (π-conjugated system), but also to the abundant adsorption sites and flexible transport channel (the interconnected 3D porous structure). A three-factor-three-level Box-Behnken design (BBD) was selected to optimize three greatly influential parameters: amount of adsorbent (A), desorption time (B) and volume of desorption solvent (C) by response surface methodology. The established method coupled to HPLC-UV detection showed wide linearity with the range of 0.2-450 μg•L-1, relatively low limits of detection (0.05-0.10 μg•L-1) with the relative standard deviation (RSD) (n=7) lower t than 5.47%. Moreover, the proposed method was successfully applied to analyze BUs in tea samples and investigate the removal effect of different washing on BUs residues from tea leaf. These results indicated that the synthesized Fe2O3@C is a promising adsorbent material for magnetic solid phase extraction of BUs at trace concentrations from tea samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.