Abstract

This work reports the metal organic frameworks composite Eu2O3@[Zn2(1,4-ndc)2dabco] synthesized by pulsed laser ablation in flowing liquid. Powder X-ray Diffraction (PXRD) and SEM were used to characterize its structure and morphology. The results show that the Eu2O3 nanoparticles with the average particle size of 3.08 nm are uniformly distributed among the crystal and the BET specific surface area of the composite Eu2O3@[Zn2(1,4-ndc)2dabco] is 1087 m2/g. At 296 K, the adsorption capacities of C2H2 on composite are up to 117.3 cm3/g, which is larger than that of the compound [Zn2(1,4-ndc)2dabco]. The C2H6/CH4 selectivity of the composite Eu2O3@[Zn2(1,4-ndc)2dabco] is 25.9 and much higher than that of some familiar MOFs materials. Moreover, the composite Eu2O3@[Zn2(1,4-ndc)2dabco] can emit very intense characteristic fluorescence at 613 nm of Eu3+ ion under ultraviolet radiation and can be used for detecting of fatty alcohols with different branch chains in fluorescence sensing because of its fluorescence intensity at 613 nm is sensitive to fatty alcohol with different carbon chains. The luminescence based sensing mechanism of the composite Eu2O3@[Zn2(1,4-ndc)2dabco] was discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.