Abstract
Triacetone triperoxide (TATP) is a high-power explosive which is often used by criminals. The detection of TATP is of great significance for solving the explosion cases. However, the preconcentration and analysis of trace levels of TATP still pose challenges for analytical researchers. In this study, metal-organic frameworks (MOFs), including IRMOF-8, MOF-5, UIO-66, ZIF-8, and MIL-101(Cr), were immobilized on a stainless steel wire using a physical adhesive method as a solid-phase microextraction (SPME) fiber coating. The prepared fibers with a controllable thickness were used for the extraction of TATP followed by gas chromatography-mass spectrometry (GC-MS) analysis. Under the identical experimental conditions, the IRMOF-8-coated fiber exhibited higher extraction efficiency for TATP than the other fibers. The IRMOF-8-coated fiber was then characterized using scanning electron microscopy and thermogravimetric analysis. The results indicated that the IRMOF-8-coated fiber not only had good thermal and chemical stabilities but also afforded a high TATP extraction efficiency. Under the same extraction conditions, the extraction efficiency of the IRMOF-8-coated fiber was 2–8 times higher than those of commercial fibers. The limit of detection was 13 ng/mL, and linearity was observed in the range of 50–5000 ng/mL with a correlation coefficient greater than 0.998. The intraday repeatability (n = 6), interday repeatability (n = 3), and fiber-to-fiber reproducibility (n = 3), were 4.1 %, 4.8 %, and 8.0 %, respectively. The recoveries of TATP from the simulated tap water and soil samples were 87.32–90.57 % and 88.76–100.93 %, respectively, with relative standard deviations lower than 11.11 % (n = 3). The above method was successfully applied for the detection of TATP transferred from a finger to a paper surface, demonstrating its good application prospects in the analysis of trace TATP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.