Abstract

Selected metal-organic frameworks exhibiting representative properties--high surface area, structural flexibility, or the presence of open metal cation sites--were tested for utility in the separation of CO(2) from H(2) via pressure swing adsorption. Single-component CO(2) and H(2) adsorption isotherms were measured at 313 K and pressures up to 40 bar for Zn(4)O(BTB)(2) (MOF-177, BTB(3-) = 1,3,5-benzenetribenzoate), Be(12)(OH)(12)(BTB)(4) (Be-BTB), Co(BDP) (BDP(2-) = 1,4-benzenedipyrazolate), H(3)[(Cu(4)Cl)(3)(BTTri)(8)] (Cu-BTTri, BTTri(3-) = 1,3,5-benzenetristriazolate), and Mg(2)(dobdc) (dobdc(4-) = 1,4-dioxido-2,5-benzenedicarboxylate). Ideal adsorbed solution theory was used to estimate realistic isotherms for the 80:20 and 60:40 H(2)/CO(2) gas mixtures relevant to H(2) purification and precombustion CO(2) capture, respectively. In the former case, the results afford CO(2)/H(2) selectivities between 2 and 860 and mixed-gas working capacities, assuming a 1 bar purge pressure, as high as 8.6 mol/kg and 7.4 mol/L. In particular, metal-organic frameworks with a high concentration of exposed metal cation sites, Mg(2)(dobdc) and Cu-BTTri, offer significant improvements over commonly used adsorbents, indicating the promise of such materials for applications in CO(2)/H(2) separations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.