Abstract

Here we report the design of an enzyme-inspired metal-organic framework (MOF), 1-OTf-Ir, by installing strong Lewis acid and photoredox sites in engineered mesopores. Al-MOF (1), with mixed 2,2'-bipyridyl-5,5-dicarboxylate (dcbpy) and 1,4-benzenediacrylate (pdac) ligands, was oxidized with ozone and then triflated to generate strongly Lewis acidic Al-OTf sites in the mesopores, followed by the installation of [Ir(ppy)2(dcbpy)]+ (ppy = 2-phenylpyridine) sites to afford 1-OTf-Ir with both Lewis acid and photoredox sites. 1-OTf-Ir effectively catalyzed reductive cross-coupling of N-hydroxyphthalimide esters or aryl bromomethyl ketones with vinyl- or alkynyl-azaarenes to afford new azaarene derivatives. 1-OTf-Ir enabled catalytic synthesis of anticholinergic drugs Pheniramine and Chlorpheniramine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call