Abstract

Herein, we report a strategy for exploiting nanoscale metal-organic frameworks (nano-MOFs) as templates for the layer-by-layer (LbL) assembly of polyelectrolytes. Because small-molecule drugs or imaging agents cannot be efficiently encapsulated by polyelectrolyte nanocapsules, we investigated two promising and biocompatible polymers (comb-shaped polyethylene glycol (PEG) and hyperbranched polyglycerol-based PEG) for the conjugation of model drugs and imaging agents, which were then encapsulated inside the nano-MOF-templated nanocapsules. Furthermore, we also systemically explored the release kinetics of the encapsulated conjugates, and examined how the encapsulation and/or release processes could be controlled by varying the composition and architecture of the polymers. We envision that our nano-MOFs-templated nanocapsules, through combining with small-molecule-polymer conjugates, will represent a new type of delivery system that could open up new opportunities for biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.