Abstract

AbstractEncapsulation of active biomolecules and/or nanoparticles in metal–organic frameworks (MOFs) remains a great challenge in biomedical applications. In this work, through a stepwise in situ growth method, a black phosphorus quantum dot (BQ) and catalase were precisely encapsulated into the inner and outer layers of MOFs, respectively. The integrated MOF system as a tandem catalyst could convert H2O2 into O2 in MOF‐stabilized catalase outer layer, and then O2 was directly injected into MOF‐sensitized BQ inner, leading to high quantum yield of singlet oxygen. Upon internalization, the photodynamic therapy efficiency of the MOF system was 8.7‐fold greater than that without catalase, showing an enhanced therapeutic effect against hypoxic tumor cells. Furthermore, by coupling with photothermal therapy of BQs, photodynamic‐thermal synergistic therapy was realized both in vitro and in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.