Abstract
Silver nanowire (AgNW) is recognized as a critical material for developing the next generation of transparent conductive films (TCFs); however, poor stability remains a major issue. Herein, we demonstrate a stable AgNW TCF passivated by a metal-organic framework (MOF) via a facile solution process. The MOF is chemically bonded to the surface of the AgNWs as a chemical inhibitor, which contributes to passivating highly active sites and providing chemical protection, leading to enhanced resistance to corrosive molecules and thereby offering exceptional stability under an ambient atmosphere. Simultaneously, the binding interaction with the MOF anchors silver atoms at the surface of the nanowires, suppressing their diffusion at high temperatures and allowing the AgNW film to maintain excellent conductivity up to 300 °C. Additionally, the hydrogen bonding between the MOF and the substrate, along with the tight connection of the MOF with AgNWs, improves the welding between the nanowires, enhancing the conductivity of the AgNW film at mild conditions while offering good flexibility and adhesion properties. Furthermore, the OLED device integrating the MOF-modified AgNW electrode shows comparable performance to an indium tin oxide-based device, verifying its huge potential for applications in optoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.