Abstract
In this study, a metal organic framework MIL-100(Fe) was synthesized for rhodamine B (RB) removal from aqueous solutions. An experimental design was conducted using a central composite design (CCD) method to obtain the RB adsorption data (n = 30) from batch experiments. In the CCD approach, solution pH, adsorbent dose, and initial RB concentration were included as input variables, whereas RB removal rate was employed as an output variable. Response surface methodology (RSM) and artificial neural network (ANN) modeling were performed using the adsorption data. In RSM modeling, the cubic regression model was developed, which was adequate to describe the RB adsorption according to analysis of variance. Meanwhile, the ANN model with the topology of 3:8:1 (three input variables, eight neurons in one hidden layer, and one output variable) was developed. In order to further compare the performance between the RSM and ANN models, additional adsorption data (n = 8) were produced under experimental conditions, which were randomly selected in the range of the input variables employed in the CCD matrix. The analysis showed that the ANN model (R2 = 0.821) had better predictability than the RSM model (R2 = 0.733) for the RB removal rate. Based on the ANN model, the optimum RB removal rate (>99.9%) was predicted at pH 5.3, adsorbent dose 2.0 g L−1, and initial RB concentration 73 mg L−1. In addition, pH was determined to be the most important input variable affecting the RB removal rate. This study demonstrated that the ANN model could be successfully employed to model and optimize RB adsorption to the MIL-100(Fe).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.