Abstract

Persistent challenges in hydroformylation of olefins include controlling regioselectivity, particularly for short aliphatic olefins and conducting reactions under ambient conditions. We report here the synthesis of monophosphine-Rh complexes on a typical chelated diphosphine ligand mediated by a Zr-MOF through isolating a pair of phosphorus atoms. We demonstrate that single-crystal X-ray diffraction can elucidate the structural transformation of the Rh catalyst during olefin hydroformylation, providing valuable information on active site reconstruction during catalysis. The Rh-MOF catalyst demonstrates excellent catalytic and recyclable performance in the hydroformylation of short aliphatic olefins with linear to branched ratios of up to 99 : 1. Due to the framework's capacity to adsorb and concentrate gases, the catalytic reactions occur under room temperature and pressure, eliminating the need for the high temperature and pressures typically required in homogeneous systems. This study show that Zr-MOF can be a unique platform for synthesizing unusual catalytic species that cannot exist in solutions for meaningful chemical transformations and elucidate valuable structural information pertaining to metal-based catalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.