Abstract

This work shows that the metal organic framework (MOF) HKUST-1 of type Cu3(BTC)2 (also referred to as MOF-199; a face-centered-cubic MOF containing nanochannels) is a most viable coating for use in enantioseparation in capillary electrochromatography (CEC). A HKUST-1 modified capillary was prepared and characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, elemental analysis and thermogravimetric analysis. CEC-based enantioseparation of the basic drugs propranolol (PRO), esmolol (ESM), metoprolol (MET), amlodipine (AML) and sotalol (SOT) was performed by using carboxymethyl-β-cyclodextrin as the chiral selector. Compared with a fused-silica capillary, the resolutions are improved (ESM: 1.79; MET: 1.80; PRO: 4.35; SOT: 1.91; AML: 2.65). The concentration of chiral selector, buffer pH value, applied voltage and buffer concentration were optimized, and the reproducibilities of the migration times and Rs values were evaluated. Graphical abstract Schematic presentation of the preparation of a HKUST-1@capillary for enantioseparation ofracemic drugs. Cu(NO3)2 and 1,3,5-benzenetricarboxylic acid (BTC) were utilized to prepare the HKUST-1@capillary. Then the capillary was applied to construct capillary electrochromatography system with carboxymethyl-β-cyclodextrin (CM-β-CD) for separation of basic racemic drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.