Abstract

We report the development of metal-organic framework (MOF)-based probes for the direct and rapid detection and quantification of perfluorooctanoic acid (PFOA) by mass spectrometry. Four water-resistant MOFs-ZIF-8, UiO-66, MIL88-A, and Tb2(BDC)3-were coated on poly(dopamine) precoated stainless steel needles and used to rapidly preconcentrate PFOA from water for direct analysis by nanoelectrospray ionization mass spectrometry. The analytical performance of each MOF for detecting PFOA was correlated with both the calculated binding energy of the MOF for PFOA and the relative change in the surface area of the MOF upon exposure to PFOA. MOF-functionalized probes can be used for the rapid (<5 min) and sensitive quantification of PFOA molecules at low ng L-1 levels in environmental water samples (i.e., tap water, rainwater, and seawater) with no sample preparation. The limit of detection of PFOA in ultrapure water was 11.0 ng L-1. Comparable accuracy to an accredited analytical method was achieved, despite the MOF-functionalized probe approach being ∼40 times quicker and requiring ∼10 times less sample. These features indicate that MOF-coated probes are promising for the direct and rapid monitoring of polyfluorinated substances and other pollutants in the field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call