Abstract

Metal-organic frameworks (MOFs), due to its exceptional characteristics like high specific surface area and design diversity, serve as an outstanding sacrificial template in forming layered double hydroxides (LDHs) for highly efficient electrodes in supercapattery devices. In this work, we have prepared bimetallic layered Nickel Cobalt LDH via in-situ etching of Co-ZIF, in different Nickel concentrations directly on Ni foam that enhances the interfacial contact between substrate and the material. The optimised NiCo LDH-2 sample exhibited remarkable electrochemical behaviour with fast electrolyte ion diffusion kinetics ideal for supercapattery device and delivered a high specific capacitance of 2567 Fg−1 at 1 Ag−1. Further, the supercapattery device assembled with Ni-Co LDH as anode and rGO derived from a sustainable source as cathode demonstrated an energy density of 21 Whkg−1, power density of 0.307 kWkg−1 and good cyclic stability with capacitance retention of 88.89 % along with coulombic efficiency of 90.58 % over 1500 cycles. This work proposes an effective approach for designing layered NiCo-LDH that can be further extended to the synthesis of other transition metal-derived LDH for supercapattery devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call