Abstract

Intracellular antioxidants such as glutathione (GSH) play a critical role in protecting malignant tumor cells from apoptosis induced by reactive oxygen species (ROS) and in mechanisms of multidrug and radiation resistance. Herein, we rationally design two multicomponent self-assembled photodynamic therapy (PDT) nanoagents, that is, Glup-MFi-c and Glud-MFo-c, which consist of respective GSH-passivation and GSH-depletion linkers in metal-organic frameworks encapsulated with photosensitizers for a deeply comprehensive understanding of GSH-based tumor PDT. Multicomponent coordination, π-π stacking, and electrostatic interactions among metal ions, photosensitizers, and bridging linkers under the protection of a biocompatible polymer generate homogeneous nanoparticles with satisfied size, good colloid stability, and ultrahigh loading capacity. Compared to the GSH-passivated Glup-MFi-c, the GSH-depleted Glud-MFo-c shows pH-responsive release of photosensitizer and [FeIII(CN)6] linker in tumor cells to efficiently deplete intracellular GSH, thus amplifying the cell-killing efficiency of ROS and suppressing the tumor growth in vivo. This study demonstrates that Glud-MFo-c acts as a ROS amplifier, providing a useful strategy to deeply understand the role of GSH in combating cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.