Abstract

A new approach to formulating pyrotechnic materials is presented whereby constituent ingredients are bound together in a solid-state lattice. This reduces the batch inconsistencies arising from the traditional approach of combining powders by ensuring the key ingredients are 'mixed' in appropriate quantities and are in intimate contact. Further benefits of these types of material are increased safety levels as well as simpler logistics, storage and manufacture. A systematic series of new frameworks comprising fuel and oxidiser agents (group 1 and 2 metal nodes & terephthalic acid derivatives as linkers) has been synthesised and structurally characterised. These new materials have been assessed for pyrotechnic effect by calorimetry and burn tests. Results indicate that these materials exhibit the desired pyrotechnic material properties and the effect can be correlated to the dimensionality of the structure. A new approach to formulating pyrotechnic materials is proposed whereby constituent ingredients are bound together in a solid-state lattice. A series of Metal-organic framework frameworks comprising fuel and oxidiser agents exhibits the desired properties of a pyrotechnic material and this effect is correlated to the dimensionality of the structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.