Abstract

The pursue of good photophysical properties for organic optoelectronic materials requires a well understanding of through-space chromophore interactions, which further requires a well control over the spatial arrangement of chromophores. However, it remains a challenge to precisely customize the positioning of chromophores in their aggregating form such as in a simplest cofacially stacked dimer. Herein, this work provides a customizable molecular design based on dissymmetrical ligands that can enable a precise control over chromophore interactions through the formation of metal–organic dimers. Anti-paralleled stacking of two dissymmetrical ligands in the metal–organic dimers results in a lateral shifting of chromophore stacking, whose spacing is determined and adjusted by the degree of ligand dissymmetry. Three metal–organic dimers with a variation in chromophore spacing exhibited unique photophysical properties in both solution and solid states and displayed high-efficient luminescence against quenching in their aggregating states. This strategy thereby offers a universally applicable way to construct chromophore dimers with fixed cofacial spacing and determinate through-space interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.