Abstract

A new route to grow single crystal semiconductor nanostructures was proposed and demonstrated on non-single crystal substrates. Hydrogenated silicon surfaces, amorphous silicon and microcrystalline silicon, were used to provide atomic short-range order required for epitaxial growth of nanostructures. Indium phosphide was chosen as a platform for semiconductor nanostructures. Indium phosphide was deposited on the hydrogenated silicon surfaces by low-pressure metalorganic chemical vapor deposition with a presence of colloidal gold nanoparticles. Under specific metal organic chemical vapor deposition growth conditions, the indium phosphide was found to grow into <i>nanoneedles</i>. Structural analysis reveals that the nanoneedles are single crystal and have either face-centered-cubic or hexagonal-closed-pack lattice when grown onto the hydrogenated microcrystalline silicon surfaces. Micro-photoluminescence measurements shows that the emission peak wavelength of an ensemble of the InP nanoneedles both on the hydrogenated amorphous silicon and hydrogenated microcrystalline silicon surfaces have a substantial blue-shift with respect to that of bulk indium phosphide. The unique shape of the emission spectra is attributed to different types of nanoneedles co-existing on the samples. The proposed route to grow semiconductor nanostructures on non-single crystal substrates would open new applications including photovoltaic, photo-detection, photo-emission and thermal energy-conversion, for which the usage of costly single crystal substrates is not preferred.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.