Abstract

Heteroatom-doped porous carbon derived from biomass have recently received increasing attention due to their unique properties such as high electrical conductivity, large specific surface area, high porosity, and easy availability, which are appealing materials for versatile applications in catalysis, energy, separation and adsorption, and life sciences as well. On the basis of our previous work in this field, we summarized in this account our recent progress on design, synthesis of metal (e. g., Pd, Co) nanoparticles supported heteroatom-doped hierarchical porous carbon material derived from bamboo shoots and their applications for important organic transformations, including chemoselective semihydrogenation of alkynes, hydrosilylation of alkynes, cascade synthesis of benzofurans from terminal alkynes and iodophenols, selective hydrogenation of functionalized nitroarenes to form anilines, imines, and formamides. Finally, the current state and future challenges in this field are discussed. We hope this account could shed light on the rational design of novel non-noble metal based heterogeneous catalysts derived from biomass for efficient and sustainable organic transformations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call