Abstract

Adenosine triphosphate (ATP) is an important rapid signaling molecule involved in a host of pathologies in the body. Historically, ATP is difficult to directly detect electrochemically with fast-scan cyclic voltammetry (FSCV) due to limited interactions at bare carbon-fibers. Systematic investigations of how ATP interacts at electrode surfaces is necessary for developing more sensitive electrochemical detection methods. Here, we have developed gold nanoparticle (AuNP), and platinum nanoparticle (PtNP) modified carbon-fiber microelectrodes coupled to FSCV to measure the extent to which ATP interacts at metal nanoparticle-modified surfaces and to improve the sensitivity of direct electrochemical detection. AuNP and PtNPs were electrodeposited on the carbon-fiber surface by scanning from −1.2 to 1.5 V for 30 s in 0.5 mg/mL HAuCl4 or 0.5 mg/mLK2PtCl6. Overall, we demonstrate an average 4.1 ± 1.0-fold increase in oxidative ATP current at AuNP-modified and a 3.5 ± 0.3-fold increase at PtNP-modified electrodes. Metal nanoparticle-modified surfaces promoted improved electrocatalytic conversion of ATP oxidation products at the surface, facilitated enhanced adsorption strength and surface coverage, and significantly improved sensitivity. ATP was successfully detected within living murine lymph node tissue following exogenous application. Overall, this study demonstrates a detailed characterization of ATP oxidation at metal nanoparticle surfaces and a significantly improved method for direct electrochemical detection of ATP in tissue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.