Abstract

The reduction of cytochrome c by thioglycolic acid was found to be extremely sensitive to metal catalysis. The rate of the uncatalyzed reaction was negligible in comparison with rates obtained from reactions supplemented with catalytic amounts of copper or iron. Both the catalyzed and uncatalyzed reactions were independent of pH (near neutrality) but when o-phenanthroline was included in the reaction mixture, a pH dependence was induced. This pH dependence is the result of an interference of oxygen with the metal complexes. A comparison of the rate constants at zero ionic strenght, which were obtained from the application of the Debye-Hückel theory for the ionic strength dependence, demonstrated that copper complexes are superior catalysts as compared with iron complexes. Our results suggest that in the copper-mediated reaction, the catalyst is a cupric thioglycolate complex with a net charge of −2. The addition of o-phenanthroline to the reaction mixture results in a tenfold decrease in the catalytic activity and in a change in the net charge of the catalyst to −1. At pH 8 the iron-mediated reduction is catalyzed by a ferric thioglycolate complex, whereas at pH 7 a ferrothioglycolate complex provides the catalytic activity. Both complexes have a net negative charge of −2. At both pH's the catalytic activity is completely abolished by the addition of o-phenanthroline. The results demonstrate the effectiveness by which metal-sulfur complexes can facilitate one-electron transfer reactions and could there-fore serve as a model in the study of various biological oxidations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call