Abstract
We report the preparation of several new porphyrin homodimers bridged by a platinum(II) ion in which very intense electronic communication through the coordination link occurs. Moreover, the synthesis of a new porphyrin dyad and its photophysical properties are reported. This dyad exhibits the fastest singlet energy transfer ever reported for synthetic systems between a zinc(II) porphyrin and a porphyrin free base. This extremely fast transfer (∼100 femtoseconds) is in the same range as the fastest one measured in natural systems. This feature is due to the platinum(II) linker, which allows for strong MO couplings between the two porphyrin units as experimentally supported by electrochemistry and corroborated by DFT computations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.