Abstract

The denitrifying woodchip bioreactor is designed to remediate nitrate-rich water, including those produced from aquaculture effluents. Reuse of treated bioreactor outflows in recirculating aquaculture would offer considerable water savings and valuable alkalinity recuperation. However, such bioreactors may leach detrimental wood-bound contaminants, preventing outflow reuse. To determine water reuse potential, woodchip media from two hardwood species (white ash, Fraxinus americana; Norway maple, Acer platanoides) were evaluated for 206 d under a range of operating conditions (start-up, steady-state, reducing conditions, and drying-rewetting cycles) for a spectrum of potentially harmful dissolved contaminants. Aerated outflows also were evaluated for acute and chronic toxicity to the biologically sensitive invertebrate Ceriodaphnia dubia. Dissolved metal leaching subsided within the first few weeks of operation, though initial concentrations of copper and zinc were detected at concentrations of concern. Elevated concentrations of tannins-lignin and total ammonia nitrogen were detected throughout the study and were influenced by operational phase. Acute toxicity was not generally detected, though chronic toxicity was observed during drying-rewetting cycles in the maple outflows. The measured toxicity was not correlated with water chemistry, indicating an additive effect of several toxicants. Overall, significant differences in outflow water quality between ash and maple wood species were negligible. Results indicated that bioreactor outflows may be applicable for aquacultural reuse, though reusing outflows immediately following start-up or restarting after a dry period would not be recommended.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.