Abstract

1,4-Dihydropyridines (1,4-DHP) possess important biochemical and pharmacological properties, including antioxidant and antimutagenic activities. AV-153-Na, an antimutagenic and DNA-repair enhancing compound was shown to interact with DNA by intercalation. Here we studied DNA binding of several AV-153 salts to evaluate the impact of AV-153 modifications on its DNA binding capacity, the ability to scavenge the peroxynitrite, to protect HeLa and B-cells cells against DNA damage.Affinity of the AV-153 salts to DNA measured by a fluorescence assay was dependent on the metal ion forming a salt in position 4 of the 1,4-DHP, and it decreased as follows: Mg > Na > Ca > Li > Rb > K. AV-153-K and AV-153-Rb could not react chemically with peroxynitrite as opposed to AV-153-Mg and AV-153-Ca, the latter increased the decomposition rate of peroxynitrite. AV-153-Na and AV-153-Ca effectively reduced DNA damage induced by peroxynitrite in HeLa cells, while AV-153-K and AV-153-Rb were less effective, AV-153-Li did not protect the DNA, and AV-153-Mg even caused DNA damage itself. The Na, K, Ca and Mg AV-153 salts were also shown to reduce the level of DNA damage in human B-cells from healthy donors. Thus, metal ions modify both DNA-binding and DNA-protecting effects of the AV-153 salts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.