Abstract

We report a metal ion-modulated effective strategy to achieve different metal-organic framework (MOF) micro/nanostructures using different metal precursors like CoCl2 ⋅ 6H2 O, CoCl2 ⋅ 6H2 O and NiCl2 ⋅ 6H2 O, and NiCl2 ⋅ 6H2 O with pyridine-3,5-dicarboxylate (3,5-pdc). The structural characterizations confirm that different morphological structures, hollow microsphere, hierarchical nanoflower, and solid nanosphere are for Co-(3,5-pdc), Co0.19 Ni0.81 -(3,5-pdc), and Ni-(3,5-pdc), respectively. These different MOF micro/nanostructures correlate with the coordination ability of Co and Ni with 3,5-pdc. Benefitting from the synergistic effect of the alloying metal nodes of Co and Ni producing rapid and rich redox reactions and the hierarchical nanoflower with higher surface area enabling excellent ion kinetics, the Co0.19 Ni0.81 -(3,5-pdc) exhibits higher specific capacitance of 515 F g-1 /273 C g-1 at 0.5 A g-1 than that of Ni-(3,5-pdc) (290 F g-1 /153.7 C g-1 ) and Co-(3,5-pdc) (132 F g-1 /67 C g-1 ), good rate capability and cycling stability. Moreover, the asymmetric supercapacitor device (Co0.19 Ni0.81 -(3,5-pdc)//AC) assembled from Co0.19 Ni0.81 -(3,5-pdc) and activated carbon (AC) achieves a maximum energy density of 42.6 Wh kg-1 at a power density of 277.3 W kg-1 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.